Chase Joyner

901 Homework 3

November 22, 2017

Problem 5.6

Suppose $X \in L_{1}$ and A and A_{n} are events.
(a) Show $\int_{\{|X|>n\}} X d P \rightarrow 0$.

Solution: Given $X \in L_{1}, E\left[X^{+}\right]$and $E\left[X^{-}\right]$are both finite and hence $E[|X|]$ is finite, i.e. $|X| \in L_{1}$. Note that $X I_{\{|X|>n\}} \rightarrow 0$ as $n \rightarrow \infty$ and $\left|X I_{\{|X|>n\}}\right| \leq|X|$ for all n. Then, since $|X| \in L_{1}$, by the dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \int_{\{|X|>n\}} X d P=\int_{\Omega} \lim _{n \rightarrow \infty} X I_{\{|X|>n\}} d P=\int_{\Omega} 0 d P=0 .
$$

(b) Show that if $P\left(A_{n}\right) \rightarrow 0$, then $\int_{A_{n}} X d P \rightarrow 0$.

Solution: First let X be a nonnegative random variable and consider for some M,

$$
\begin{aligned}
\int_{A_{n}} X d P & =\int_{A_{n} \cap\{X \leq M\}} X d P+\int_{A_{n} \cap\{X>M\}} X d P \\
& \leq M P\left(A_{n} \cap\{X \leq M\}\right)+\int_{\{X>M\}} X d P \\
& \leq M P\left(A_{n}\right)+\int_{\{X>M\}} X d P .
\end{aligned}
$$

Now since $P\left(A_{n}\right) \rightarrow 0$, we have

$$
\limsup _{n} \int_{A_{n}} X d P \leq \int_{\{X>M\}} X d P .
$$

Taking $M \rightarrow \infty$ and using part (a) gives

$$
\limsup \int_{A_{n}} X d P \leq 0 \leq \liminf _{n} \int_{A_{n}} X d P
$$

where the second inequality follows from X nonnegative. Thus, $\lim _{n \rightarrow \infty} \int_{A_{n}} X d P=0$. Lastly, if X is not nonnegative, then

$$
\limsup \int_{A_{n}} X d P=\lim _{n \rightarrow \infty} \int_{A_{n}} X^{+} d P-\lim _{n \rightarrow \infty} \int_{A_{n}} X^{-} d P=0-0=0
$$

and similarly for $\liminf _{n}$, giving the result.
(c) Show $\int_{A}|X| d P=0$ iff $P(A \cap\{|X|>0\})=0$.

Solution: Assume $\int_{A}|X| d P=0$. Recall that any nonnegative random variable, say $|X| I_{A}$, is the limit of a monotone increasing sequence of simple random variables. Then,

$$
|X| I_{A} \geq \sum_{k=1}^{n 2^{n}} a_{k} I_{A \cap A_{k}}+n I_{A \cap\{|X|>n\}}
$$

where we define $a_{k}=\frac{k-1}{2^{n}}$ and $A_{k}=\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right)$. Taking expectations gives

$$
0 \stackrel{\star}{=} E\left[|X| I_{A}\right] \geq \sum_{k=1}^{n 2^{n}} a_{k} P\left(A \cap A_{k}\right)+n P(A \cap\{|X|>n\}) .
$$

where we have $\stackrel{\star}{=}$ by assuming $\int_{A}|X| d P=0$. Therefore, $P\left(A \cap A_{k}\right)=0$ for all $k=$ $1, \ldots, n 2^{n}$ and $P(A \cap\{|X|>n\})=0$. By summing over $k \geq 2$ and adding $P(A \cap\{|X|>$ $n\})=0$, we have $P\left(A \cap\left\{|X| \geq 2^{-n}\right\}\right)=0$. Since $A \cap\left\{|X| \geq 2^{-n}\right\}$ are monotone increasing sets in n, we conclude

$$
P(A \cap\{|X|>0\})=\lim _{n \rightarrow \infty} P\left(A \cap\left\{|X| \geq 2^{-n}\right\}\right)=\lim _{n \rightarrow \infty} 0=0 .
$$

Conversely, assume that $P(A \cap\{|X|>0\})=0$. Define $A_{n}=A \cap\{|X|>1 / n\}$. Note that these sets are monotone increasing and

$$
A \cap\{|X|>0\}=\bigcup_{n=1}^{\infty} A_{n}
$$

Therefore, we have that

$$
P\{A \cap\{|X|>0\}\}=\lim _{n \rightarrow \infty} P\left(A_{n}\right)=0
$$

Now, by part (b) and the monotone convergence theorem,

$$
\begin{gathered}
\int_{A}|X| d P=\int_{\Omega}|X| I(A \cap\{|X|>0\}) d P=\int_{\Omega} \lim _{n \rightarrow \infty}|X| I\left(A_{n}\right) d P \\
\stackrel{M C T}{=} \lim _{n \rightarrow \infty} \int_{\Omega}|X| I\left(A_{n}\right) d P=\lim _{n \rightarrow \infty} \int_{A_{n}}|X| d P \stackrel{(b)}{=} 0 .
\end{gathered}
$$

This concludes the result.
(d) If $X \in L_{2}$, show $\operatorname{Var}(X)=0$ implies $P(X=E(X))=1$.

Solution: First note that

$$
\int_{\Omega}(X-E[X])^{2} d P=\operatorname{Var}(X)=0
$$

Then, by part (c), $P\left((X-E[X])^{2}>0\right)=0$, i.e. $P(X=E[X])=1$ as desired.
(e) Suppose that (Ω, \mathcal{B}, P) is a probability space and $A_{i} \in \mathcal{B}, i=1,2$. Define the distance $d: \mathcal{B} \times \mathcal{B} \rightarrow \mathbb{R}$ by $d\left(A_{1}, A_{2}\right)=P\left(A_{1} \Delta A_{2}\right)$. Prove that if $A_{n}, A \in \mathcal{B}$ and $d\left(A_{n}, A\right) \rightarrow 0$, then $\int_{A_{n}} X d P \rightarrow \int_{A} X d P$ so that the map $A \rightarrow \int_{A} X d P$ is continuous.

Solution: First note that

$$
P\left(A_{n} \Delta A\right)=P\left(A_{n} \cap A^{c}\right)+P\left(A \cap A_{n}^{c}\right) .
$$

Then since $P\left(A_{n} \Delta A\right) \rightarrow 0, P\left(A_{n} \cap A^{c}\right) \rightarrow 0$ and $P\left(A \cap A_{n}^{c}\right) \rightarrow 0$. Thus, by part (b),

$$
\begin{aligned}
\int_{A_{n}} X d P-\int_{A} X d P & =\int_{A_{n} \cap A} X d P+\int_{A_{n} \cap A^{c}} X d P-\int_{A \cap A_{n}} X d P-\int_{A \cap A_{n}^{c}} X d P \\
& =\int_{A_{n} \cap A^{c}} X d P-\int_{A \cap A_{n}^{c}} X d P \\
& \rightarrow 0-0=0 .
\end{aligned}
$$

Likewise for $\int_{A} X d P-\int_{A_{n}} X d P$, and hence we have $\left|\int_{A_{n}} X d P-\int_{A} X d P\right| \rightarrow 0$. This proves the result.

Problem 5.9

Use Fubini's theorem to show for a distribution function $F(x)$

$$
\int_{\mathbb{R}}(F(x+a)-F(x)) d x=a,
$$

where $d x$ can be interpreted as Lebesgue measure.
Solution: Note that $x<t<x+a$ implies $t-a<x<t$. Therefore, by Fubini's theorem,

$$
\begin{aligned}
\int_{\mathbb{R}}(F(x+a)-F(x)) d x & =\int_{\mathbb{R}} \int_{x}^{x+a} f(t) d t d x=\int_{\mathbb{R}} \int_{t-a}^{t} f(t) d x d t \\
& =\int_{\mathbb{R}} f(t) \int_{t-a}^{t} d x d t=\int_{\mathbb{R}} a f(t) d t=a .
\end{aligned}
$$

Problem 5.20

For a random variable X with distribution F, define the moment generating function $\phi(\lambda)$ by $\phi(\lambda)=E\left(e^{\lambda X}\right)$. Let $\Lambda=\{\lambda \in \mathbb{R}: \phi(\lambda)<\infty\}$ and set $\lambda_{\infty}=\sup \Lambda$. Lastly, define the measure F_{λ} by $F_{\lambda}(I)=\int_{I} \frac{e^{\lambda x}}{\phi(\lambda)} F(d x), \lambda \in \Lambda$.
(a) Prove that $\phi(\lambda)=\int_{\mathbb{R}} e^{\lambda x} F(d x)$.

Solution: This follows directly from the fact that $E[g(X)]=\int_{\mathbb{R}} g(x) F(d x)$.
(b) Prove for λ in the interior of Λ that $\phi(\lambda)>0$ and $\phi(\lambda)$ is continuous on the interior of Λ.

Solution: Suppose $\phi(\lambda)=0$. This implies that $E\left[e^{\lambda X}\right]=0$, i.e. $e^{\lambda x}=0$ almost everywhere. However, this function is only 0 at $\pm \infty$ and so this cannot happen. Therefore, $\phi(\lambda)>0$. Next we show that $\phi(\lambda)$ is continuous on the interior of Λ. Let λ be in the interior of Λ. Then, there exists an $\epsilon>0$ such that $(\lambda-\epsilon, \lambda+\epsilon) \in \Lambda$. Now, assume $\lambda_{n} \rightarrow \lambda$. Then, for δ where $0<\delta<\epsilon$, there exists an n_{0} such that $\left|\lambda-\lambda_{n}\right|<\delta$ for all $n \geq n_{0}$. That is, $\lambda-\delta<\lambda_{n}<\lambda+\delta$ for all $n \geq n_{0}$. Using this, we have

$$
e^{\lambda_{n} x} \leq e^{(\lambda+\delta) x}+e^{(\lambda-\delta) x}
$$

for all $n \geq n_{0}$. Since $0<\delta<\epsilon, \lambda+\delta$ and $\lambda-\delta$ are in Λ. Therefore, we can use the dominated convergence to obtain

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} e^{\lambda_{n} x} F(d x)=\int_{\mathbb{R}} \lim _{n \rightarrow \infty} e^{\lambda_{n} x} F(d x)=\int_{\mathbb{R}} e^{\lambda x} F(d x)
$$

(c) Give an example where (i) $\lambda_{\infty} \in \Lambda$ and (ii) $\lambda_{\infty} \notin \Lambda$.

Solution: Consider the density function

$$
f(x)=\frac{c e^{-x}}{(1+x)^{2}} I(x>0)
$$

where c is the normalizing constant to ensure this is a valid probability density function. Then, certainly $\lambda_{\infty}=1$. But,

$$
\int_{0}^{\infty} \frac{c}{(1+x)^{2}} d x=c
$$

and so $\lambda_{\infty} \in \Lambda$. Now consider

$$
f(x)=\frac{c e^{-x}}{(1+x)} I(x>0),
$$

where c is a different normalizing constant than before. Again, $\lambda_{\infty}=1$ but this time

$$
\int_{0}^{\infty} \frac{1}{(1+x)} d x=\infty
$$

and so $\lambda_{\infty} \notin \Lambda$.
(d) If F has a density f, verify F_{λ} has a density f_{λ}. What is f_{λ} ? (Note that the family $\left\{f_{\lambda}, \lambda \in \Lambda\right\}$ is an exponential family of densities.)

Solution: By the definition of F_{λ} given above,

$$
F_{\lambda}(I)=\int_{I} \frac{e^{\lambda x}}{\phi(\lambda)} F(d x)=\int_{I} \frac{e^{\lambda x}}{\phi(\lambda)} f(x) d x
$$

This implies that $f_{\lambda}(x)=\frac{e^{\lambda x}}{\phi(\lambda)} f(x)$.
(e) If $F(I)=0$, show $F_{\lambda}(I)=0$ as well for I a finite interval and $\lambda \in \Lambda$.

Solution: Given $F(I)=0$, we have

$$
F(I)=\int_{I} f(x) d x=0
$$

which implies that $f=0$ almost everywhere. Consequently, $f_{\lambda}=0$ almost everywhere and so $F_{\lambda}(I)=0$.

Problem 6.12

Let $\left\{X_{n}\right\}$ be a sequence of random variables.
(a) If $X_{n} \xrightarrow{P} 0$, then for any $p>0$,

$$
\begin{equation*}
\frac{\left|X_{n}\right|^{p}}{1+\left|X_{n}\right|^{p}} \stackrel{P}{\rightarrow} 0 \quad \text { (6.21) } \quad \text { and } \quad E\left(\frac{\left|X_{n}\right|^{p}}{1+\left|X_{n}\right|^{p}}\right) \rightarrow 0 \tag{6.22}
\end{equation*}
$$

Solution: For $0<\epsilon<1$,

$$
P\left\{\frac{\left|X_{n}\right|^{p}}{1+\left|X_{n}\right|^{p}} \geq \epsilon\right\}=P\left\{\left|X_{n}\right| \geq \sqrt[p]{\frac{\epsilon}{1-\epsilon}}\right\} \rightarrow 0
$$

since $X_{n} \xrightarrow{P} 0$. This shows (6.21). To show (6.22), define the set $A_{n}=\left\{\left|X_{n}\right|<\epsilon\right\}$. Then,

$$
\begin{aligned}
E\left(\frac{\left|X_{n}\right|^{p}}{1+\left|X_{n}\right|^{p}}\right) & =\int_{A_{n}} \frac{\left|X_{n}\right|^{p}}{1+\left|X_{n}\right|^{p}} d P+\int_{A_{n}^{c}} \frac{\left|X_{n}\right|^{p}}{1+\left|X_{n}\right|^{p}} d P \\
& \leq \int_{A_{n}}\left|X_{n}\right|^{p} d P+\int_{A_{n}^{c}} d P \\
& <\epsilon P\left(A_{n}\right)+P\left(A_{n}^{c}\right) .
\end{aligned}
$$

Now, since ϵ was arbitrary, we have

$$
E\left(\frac{\left|X_{n}\right|^{p}}{1+\left|X_{n}\right|^{p}}\right) \leq P\left(A_{n}^{c}\right) \rightarrow 0
$$

as $n \rightarrow \infty$ since $X_{n} \xrightarrow{P} 0$. This shows (6.22).
(b) If (6.21) holds for some $p>0$, then $X_{n} \xrightarrow{P} 0$.

Solution: For $\epsilon>0$, we have

$$
P\left\{\left|X_{n}\right| \geq \epsilon\right\}=P\left\{\frac{\left|X_{n}\right|^{p}}{1+\left|X_{n}\right|^{p}} \geq \frac{\epsilon^{p}}{1+\epsilon^{p}}\right\} \rightarrow 0
$$

as $n \rightarrow \infty$ because of (6.21).
(c) Suppose $p>0$. Show $X_{n} \xrightarrow{P} 0$ iff (6.22).

Solution: The forward direction has been proven in part (a). We prove the reverse direction by way of contraposition. Assume there exists an $\epsilon_{0}>0$ such that $\lim _{n \rightarrow \infty} P\left(A_{n}\right)>0$, where $A_{n}=\left\{\left|X_{n}\right| \geq \epsilon_{0}\right\}$. Then,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} E\left(\frac{\left|X_{n}\right|^{p}}{1+\left|X_{n}\right|^{p}}\right) & =\lim _{n \rightarrow \infty} \int_{\Omega} \frac{\left|X_{n}\right|^{p}}{1+\left|X_{n}\right|^{p}} d P \geq \lim _{n \rightarrow \infty} \int_{A_{n}} \frac{\left|X_{n}\right|^{p}}{1+\left|X_{n}\right|^{p}} d P \\
& \geq \lim _{n \rightarrow \infty} \int_{A_{n}} \frac{\epsilon_{0}^{p}}{1+\epsilon_{0}^{p}} d P=\lim _{n \rightarrow \infty} \frac{\epsilon_{0}^{p}}{1+\epsilon_{0}^{p}} P\left(A_{n}\right)>0
\end{aligned}
$$

This proves the result.

Problem 6.23

A classical transform result says the following: Suppose $u_{n} \geq 0$ and $u_{n} \rightarrow u$ as $n \rightarrow \infty$. For $0<s<1$, define the generating function

$$
U(s)=\sum_{n=0}^{\infty} u_{n} s^{n}
$$

Show that $\lim _{s \rightarrow 1}(1-s) U(s)=u$ by the following relatively painless method which uses convergence in probability: Let $T(s)$ be a geometric random variable satisfying $P(T(s)=n)=(1-s) s^{n}$. Then $T(s) \xrightarrow{P} \infty$. What is $E\left(u_{T(s)}\right)$?

Solution: First see that

$$
(1-s) U(s)=(1-s) \sum_{n=0}^{\infty} u_{n} s^{n}=\sum_{n=0}^{\infty} u_{n}(1-s) s^{n}=E\left(u_{T(s)}\right) .
$$

Therefore, it suffices to show $E\left(u_{T(s)}\right) \rightarrow u$ as $s \rightarrow 1$. Consider

$$
\begin{aligned}
\left|E\left(u_{T(s)}\right)-u\right| & =\left|\sum_{n=0}^{\infty} u_{n} P(T(s)=n)-u\right|=\left|\sum_{n=0}^{\infty}\left(u_{n}-u\right) P(T(s)=n)\right| \\
& \leq \sum_{n=0}^{\infty}\left|u_{n}-u\right| P(T(s)=n)
\end{aligned}
$$

Since $u_{n} \rightarrow u$, then for any $\epsilon>0$, there exists an n_{0} such that $\left|u_{n}-u\right|<\epsilon$ for all $n \geq n_{0}$. Take $M=\max \left\{\left|u_{i}-u\right|: i=1, \ldots, n_{0}-1\right\}$. Then, we have

$$
\left|E\left(u_{T(s)}\right)-u\right|<M \sum_{k=0}^{n_{0}-1} P(T(s)=k)+\epsilon \sum_{k=n_{0}}^{\infty} P(T(s)=k) \leq M \sum_{k=0}^{n_{0}-1}(1-s) s^{k}+\epsilon .
$$

Now taking $s \rightarrow 1$, we have $\lim _{s \rightarrow 1}\left|E\left(u_{T(s)}\right)-u\right|<\epsilon$. Since $\epsilon>0$ was arbitrary, we conclude $\lim _{s \rightarrow 1}\left|E\left(u_{T(s)}\right)-u\right|=0$, which is what we needed to show.

Problem 6.30

For a random variable X, define $\|X\|_{\infty}=\sup \{x: P(|X|>x)>0\}$. Let L_{∞} be the set of all random variables X for which $\|X\|_{\infty}<\infty$.
(a) Show that for a random variable X and $1<p<q<\infty$,

$$
0 \leq\|X\|_{1} \leq\|X\|_{p} \leq\|X\|_{q} \leq\|X\|_{\infty} .
$$

Solution: First note that $\|X\|_{1} \leq\|X\|_{p}$ follows immediately from Holder's inequality. Let $Z=|X|^{p}$. Since $q>p$, then $q / p>1$ and so by Holder's inequality,

$$
E\left[|X|^{p}\right]=E[|Z \cdot 1|] \leq E\left[|Z|^{q / p}\right]^{p / q} \cdot 1=E\left[|X|^{q}\right]^{p / q} .
$$

Raising both sides to the $1 / p$ gives $\|X\|_{p} \leq\|X\|_{q}$. For the last inequality, define the set $A=\left\{|X|>\|X\|_{\infty}\right\}$. Then, $P(A)=0$, because otherwise $\|X\|_{\infty}$ wouldn't be the supremum. Therefore, we have

$$
E\left[|X|^{q}\right]=\int_{\Omega}|X|^{q} d P=\int_{A^{c}}|X|^{q} d P \leq \int_{A^{c}}\|X\|_{\infty}^{q} d P=\|X\|_{\infty}^{q}
$$

Raising both sides to $1 / q$ gives $\|X\|_{q} \leq\|X\|_{\infty}$ and the problem is complete.
(b) For $1<p<q<\infty$, show $L_{\infty} \subset L_{q} \subset L_{p} \subset L_{1}$.

Solution: This follows immediately from part (a).
(c) Show Holder's inequality holds in the form $E(|X Y|) \leq\|X\|_{1}\|Y\|_{\infty}$.

Solution: Consider the set $A=\left\{|Y|>\|Y\|_{\infty}\right\}$ from part (a). Then,

$$
\begin{aligned}
E(|X Y|) & =\int_{\Omega}|X Y| d P=\int_{A^{c}}|X||Y| d P \\
& \leq \int_{A^{c}}|X|\|Y\|_{\infty} d P=\|Y\|_{\infty} \int_{A^{c}}|X| d P \\
& =\|Y\|_{\infty} \int_{\Omega}|X| d P=\|X\|_{1}
\end{aligned}
$$

which proves the result.
(d) Show Minkowski's inequality holds in the form $\|X+Y\|_{\infty} \leq\|X\|_{\infty}+\|Y\|_{\infty}$.

Solution: Define the sets

$$
\begin{aligned}
A & =\{x: P(|X|>x)>0\} \\
B & =\{x: P(|Y|>x)>0\} \\
A B & =\{x: P(|X+Y|>x)>0\} .
\end{aligned}
$$

Let $a \in A B$. Then, $P(|X+Y|>a)>0$, and so $P(|X|+|Y|>a)>0$. By denseness,

$$
\{|X|+|Y|>a\}=\bigcup_{\substack{r_{x}, r_{y} \in \mathbb{Q} \\ r_{x}+r_{y}>a}}\left\{|X|>r_{x},|Y|>r_{y}\right\}
$$

Since the left hand side has positive probability, there must exist an r_{x}, r_{y} such that $P\left(|X|>r_{x},|Y|>r_{y}\right)>0$ and $a<r_{x}+r_{y}$. This implies $P\left(|X|>r_{x}\right)>0$ and $P\left(|Y|>r_{y}\right)>0$, i.e. $r_{x} \in A$ and $r_{y} \in B$. Lastly, taking supremums of $a<r_{x}+r_{y}$ over each of the three sets will give $\|X+Y\|_{\infty} \leq\|X\|_{\infty}+\|Y\|_{\infty}$.

